May 4, 2021
Many control tasks exhibit similar dynamics that can be modeled as having common latent structure. Hidden-Parameter Markov Decision Processes (HiP-MDPs) explicitly model this structure to improve sample efficiency in multi-task settings. However, this setting makes strong assumptions on the observability of the state that limit its application in real-world scenarios with rich observation spaces. In this work, we leverage ideas of common structure from the HiP-MDP setting, and extend it to enable robust state abstractions inspired by Block MDPs. We derive instantiations of this new framework for both multi-task reinforcement learning (MTRL) and meta-reinforcement learning (Meta-RL) settings. Further, we provide transfer and generalization bounds based on task and state similarity, along with sample complexity bounds that depend on the aggregate number of samples across tasks, rather than the number of tasks, a significant improvement over prior work that use the same environment assumptions. To further demonstrate the efficacy of the proposed method, we empirically compare and show improvement over multi-task and meta-reinforcement learning baselines.
Publisher
ICLR 2021
Research Topics
Core Machine Learning
Reinforcement Learning
June 13, 2025
Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert
June 13, 2025
June 11, 2025
Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux
June 11, 2025
June 10, 2025
Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran
June 10, 2025
June 10, 2025
Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas
June 10, 2025
December 07, 2020
Avishek Joey Bose, Gauthier Gidel, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton
December 07, 2020
November 03, 2020
Rui Zhang, Hanghang Tong Yinglong Xia, Yada Zhu
November 03, 2020
Our approach
Latest news
Foundational models