June 23, 2020
In this paper, we address the discovery of robotic options from demonstrations in an unsupervised manner. Specifically, we present a framework to jointly learn low-level control policies and higher-level policies of how to use them from demonstrations of a robot performing various tasks. By representing options as continuous latent variables, we frame the problem of learning these options as latent variable inference. We then present a temporal formulation of variational inference based on a temporal factorization of trajectory likelihoods, that allows us to infer options in an unsupervised manner. We demonstrate the ability of our framework to learn such options across three robotic demonstration datasets.
Written by
Tanmay Shankar
Abhinav Gupta
Publisher
ICML
Research Topics
Robotics
May 06, 2024
Ben Newman, Christopher Paxton, Kris Kitani, Henny Admoni
May 06, 2024
April 02, 2024
Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar
April 02, 2024
March 26, 2024
Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, Amy Zhang
March 26, 2024
March 12, 2024
Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Jimmy Yang, Ruslan Partsey, Ruta Desai, Alexander William Clegg, Tiffany Min, Vladimír Vondruš, Theo Gervet, Vincent-Pierre Berges, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, Roozbeh Mottaghi
March 12, 2024
Foundational models
Latest news
Foundational models