December 06, 2021
Theoretical analyses for graph learning methods often assume a complete observation of the input graph. Such an assumption might not be useful for handling any-size graphs due to the scalability issues in practice. In this work, we develop a theoretical framework for graph classification problems in the partial observation setting (i.e., subgraph samplings). Equipped with insights from graph limit theory, we propose a new graph classification model that works on a randomly sampled subgraph and a novel topology to characterize the representability of the model. Our theoretical framework contributes a theoretical validation of mini-batch learning on graphs and leads to new learning-theoretic results on generalization bounds as well as size-generalizability without assumptions on the input.
August 12, 2024
Arman Zharmagambetov, Yuandong Tian, Aaron Ferber, Bistra Dilkina, Taoan Huang
August 12, 2024
August 09, 2024
Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter
August 09, 2024
August 02, 2024
August 02, 2024
July 29, 2024
Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Saketh Rambhatla, Mian Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra
July 29, 2024
Foundational models
Latest news
Foundational models