THEORY

CORE MACHINE LEARNING

Learning on Random Balls is Sufficient for Estimating (Some) Graph Parameters

December 06, 2021

Abstract

Theoretical analyses for graph learning methods often assume a complete observation of the input graph. Such an assumption might not be useful for handling any-size graphs due to the scalability issues in practice. In this work, we develop a theoretical framework for graph classification problems in the partial observation setting (i.e., subgraph samplings). Equipped with insights from graph limit theory, we propose a new graph classification model that works on a randomly sampled subgraph and a novel topology to characterize the representability of the model. Our theoretical framework contributes a theoretical validation of mini-batch learning on graphs and leads to new learning-theoretic results on generalization bounds as well as size-generalizability without assumptions on the input.

Download the Paper

AUTHORS

Written by

Takanori Maehara

Hoang NT

Publisher

NeurIPS

Research Topics

Theory

Core Machine Learning

Related Publications

July 21, 2024

CORE MACHINE LEARNING

From Neurons to Neutrons: A Case Study in Mechanistic Interpretability

Ouail Kitouni, Niklas Nolte, Samuel Pérez Díaz, Sokratis Trifinopoulos, Mike Williams

July 21, 2024

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

June 17, 2024

HUMAN & MACHINE INTELLIGENCE

COMPUTER VISION

D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, Yaron Lipman

June 17, 2024

June 17, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Neta Shaul, Uriel Singer, Ricky Chen, Matt Le, Ali Thabet, Albert Pumarola, Yaron Lipman

June 17, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.