Reinforcement Learni9ng

Core Machine Learning

Learning Invariant Representations for Reinforcement Learning without Reconstruction

May 4, 2021

Abstract

We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction. Our goal is to learn representations that provide for effective downstream control and invariance to task-irrelevant details. Bisimulation metrics quantify behavioral similarity between states in continuous MDPs, which we propose using to learn robust latent representations which encode only the task-relevant information from observations. Our method trains encoders such that distances in latent space equal bisimulation distances in state space. We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks, where the background is replaced with moving distractors and natural videos, while achieving SOTA performance. We also test a first-person highway driving task where our method learns invariance to clouds, weather, and time of day. Finally, we provide generalization results drawn from properties of bisimulation metrics, and links to causal inference.

Download the Paper

AUTHORS

Written by

Amy Zhang

Rowan McAllister

Roberto Calandra

Yarin Gal

Sergey Levine

Publisher

ICLR 2021

Research Topics

Reinforcement Learning

Core Machine Learning

Related Publications

December 05, 2020

Robotics

Reinforcement Learni9ng

Neural Dynamic Policies for End-to-End Sensorimotor Learning

Deepak Pathak, Abhinav Gupta, Mustafa Mukadam, Shikhar Bahl

December 05, 2020

December 07, 2020

Reinforcement Learni9ng

Joint Policy Search for Collaborative Multi-agent Imperfect Information Games

Yuandong Tian, Qucheng Gong, Tina Jiang

December 07, 2020

March 13, 2021

Reinforcement Learni9ng

On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, Andre Biedenkapp, Kurtland Chua, Frank Hutter, Roberto Calandra

March 13, 2021

October 10, 2020

Computer Vision

Reinforcement Learni9ng

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero,Roberto CalandraRoberto Calandra, Michal Drozdzal

October 10, 2020

December 05, 2020

Reinforcement Learni9ng

An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits

Andrea Tirinzonin, Matteo Pirotta, Marcello Restelli, Alessandro Lazaric

December 05, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.