COMPUTER VISION

CORE MACHINE LEARNING

Learning from Few Samples: Transformation-Invariant SVMs with Composition and Locality at Multiple Scales

January 04, 2023

Abstract

Motivated by the problem of learning with small sample sizes, this paper shows how to incorporate into support-vector machines (SVMs) those properties that have made convolutional neural networks (CNNs) successful. Particularly important is the ability to incorporate domain knowledge of invariances, e.g., translational invariance of images. Kernels based on the maximum similarity over a group of transformations are not generally positive definite. Perhaps it is for this reason that they have not been studied theoretically. We address this lacuna and show that positive definiteness indeed holds with high probability for kernels based on the maximum similarity in the small training sample set regime of interest, and that they do yield the best results in that regime. We also show how additional properties such as their ability to incorporate local features at multiple spatial scales, e.g., as done in CNNs through max pooling, and to provide the benefits of composition through the architecture of multiple layers, can also be embedded into SVMs. We verify through experiments on widely available image sets that the resulting SVMs do provide superior accuracy in comparison to well-established deep neural network benchmarks for small sample sizes.

Download the Paper

AUTHORS

Written by

Xi Liu

Panganamala Kumar

Ruida Zhou

Tao Liu

Publisher

NeurIPS

Research Topics

Computer Vision

Core Machine Learning

Related Publications

February 15, 2024

CORE MACHINE LEARNING

Revisiting Feature Prediction for Learning Visual Representations from Video

Adrien Bardes, Quentin Garrido, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido Assran, Nicolas Ballas, Jean Ponce

February 15, 2024

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

January 25, 2024

COMPUTER VISION

LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks

Felix Xu, Di Lin, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Wei Feng, Xuhong Ren

January 25, 2024

January 09, 2024

CORE MACHINE LEARNING

Accelerating a Triton Fused Kernel for W4A16 Quantized Inference with SplitK Work Decomposition

Less Wright, Adnan Hoque

January 09, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.