COMPUTER VISION

Learning Fine-grained View-Invariant Representations from Unpaired Ego-Exo Videos via Temporal Alignment

December 08, 2023

Abstract

The egocentric and exocentric viewpoints of a human activity look dramatically different, yet invariant representations to link them are essential for many potential applications in robotics and augmented reality. Prior work is limited to learning view-invariant features from paired synchronized viewpoints. We relax that strong data assumption and propose to learn fine-grained action features that are invariant to the viewpoints by aligning egocentric and exocentric videos in time, even when not captured simultaneously or in the same environment. To this end, we propose AE2, a self-supervised embedding approach with two key designs: (1) an object-centric encoder that explicitly focuses on regions corresponding to hands and active objects; and (2) a contrastive-based alignment objective that leverages temporally reversed frames as negative samples. For evaluation, we establish a benchmark for fine-grained video understanding in the ego-exo context, comprising four datasets---including an ego tennis forehand dataset we collected, along with dense per-frame labels we annotated for each dataset. On the four datasets, our AE2 method strongly outperforms prior work in a variety of fine-grained downstream tasks, both in regular and cross-view settings.

Download the Paper

AUTHORS

Written by

Sherry Xue

Kristen Grauman

Publisher

NeurIPS

Research Topics

Computer Vision

Related Publications

April 17, 2025

COMPUTER VISION

Perception Encoder: The best visual embeddings are not at the output of the network

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li (FAIR), Piotr Dollar, Christoph Feichtenhofer

April 17, 2025

April 17, 2025

COMPUTER VISION

PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding

Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Suyog Jain, Miguel Martin, Huiyu Wang, Nikhila Ravi, Shashank Jain, Tammy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan, Philipp Krähenbühl, Piotr Dollar, Lorenzo Torresani, Kristen Grauman, Christoph Feichtenhofer

April 17, 2025

April 14, 2025

RESEARCH

GRAPHICS

Autoregressive Distillation of Diffusion Transformers

Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu

April 14, 2025

March 30, 2025

COMPUTER VISION

Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation

Guy Yariv, Yuval Kirstain, Amit Zohar, Shelly Sheynin, Yaniv Taigman, Yossef (Yossi) Adi, Sagie Benaim, Adam Polyak

March 30, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.