RESEARCH

COMPUTER VISION

Learning Exploration Policies for Navigation

April 08, 2019

Abstract

Numerous past works have tackled the problem of task-driven navigation. But, how to effectively explore a new environment to enable a variety of down-stream tasks has received much less attention. In this work, we study how agents can autonomously explore realistic and complex 3D environments without the context of task-rewards. We propose a learning-based approach and investigate different policy architectures, reward functions, and training paradigms. We find that use of policies with spatial memory that are bootstrapped with imitation learning and finally finetuned with coverage rewards derived purely from on-board sensors can be effective at exploring novel environments. We show that our learned exploration policies can explore better than classical approaches based on geometry alone and generic learning-based exploration techniques. Finally, we also show how such task-agnostic exploration can be used for down-stream tasks. Videos are available at https://sites.google.com/view/exploration-for-nav/.

Download the Paper

AUTHORS

Written by

Abhinav Gupta

Saurabh Gupta

Tao Chen

Publisher

ICLR

Research Topics

Computer Vision

Related Publications

December 12, 2024

COMPUTER VISION

EvalGIM: A Library for Evaluating Generative Image Models

Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano

December 12, 2024

December 11, 2024

COMPUTER VISION

Video Seal: Open and Efficient Video Watermarking

Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko

December 11, 2024

December 11, 2024

NLP

COMPUTER VISION

Meta CLIP 1.2

Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer

December 11, 2024

December 11, 2024

COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.