April 3, 2019
In order for artificial agents to coordinate effectively with people, they must act consistently with existing conventions (e.g. how to navigate in traffic, which language to speak, or how to coordinate with teammates). A group’s conventions can be viewed as a choice of equilibrium in a coordination game. We consider the problem of an agent learning a policy for a coordination game in a simulated environment and then using this policy when it enters an existing group. When there are multiple possible conventions we show that learning a policy via multi-agent reinforcement learning (MARL) is likely to find policies which achieve high payoffs at training time but fail to coordinate with the real group into which the agent enters. We assume access to a small number of samples of behavior from the true convention and show that we can augment the MARL objective to help it find policies consistent with the real group’s convention. In three environments from the literature – traffic, communication, and team coordination – we observe that augmenting MARL with a small amount of imitation learning greatly increases the probability that the strategy found by MARL fits well with the existing social convention. We show that this works even in an environment where standard training methods very rarely find the true convention of the agent’s partners.
Research Topics
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
March 17, 2025
Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad
March 17, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Our approach
Latest news
Foundational models