August 21, 2020
Embodied agents operating in human spaces must be able to master how their environment works: what objects can the agent use, and how can it use them? We introduce a reinforcement learning approach for exploration for interaction, whereby an embodied agent autonomously discovers the affordance landscape of a new unmapped 3D environment (such as an unfamiliar kitchen). Given an egocentric RGB-D camera and a high-level action space, the agent is rewarded for maximizing successful interactions while simultaneously training an image-based affordance segmentation model. The former yields a policy for acting efficiently in new environments to prepare for downstream interaction tasks, while the latter yields a convolutional neural network that maps image regions to the likelihood they permit each action, densifying the rewards for exploration. We demonstrate our idea with AI2-iTHOR. The results show agents can learn how to use new home environments intelligently and that it prepares them to rapidly address various downstream tasks like "find a knife and put it in the drawer." Project page: http://vision.cs.utexas.edu/projects/interaction-exploration/
October 31, 2024
Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra
October 31, 2024
October 16, 2024
Movie Gen Team
October 16, 2024
September 10, 2024
Uriel Singer, Amit Zohar, Yuval Kirstain, Shelly Sheynin, Adam Polyak, Devi Parikh, Yaniv Taigman
September 10, 2024
September 05, 2024
Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma
September 05, 2024
Foundational models
Latest news
Foundational models