CONVERSATIONAL AI

RESEARCH

Lead2Gold: Towards exploiting the full potential of noisy transcriptions for speech recognition

October 16, 2019

Abstract

The transcriptions used to train an Automatic Speech Recognition (ASR) system may contain errors. Usually, either a quality control stage discards transcriptions with too many errors, or the noisy transcriptions are used as is. We introduce Lead2Gold, a method to train an ASR system that exploits the full potential of noisy transcriptions. Based on a noise model of transcription errors, Lead2Gold searches for better transcriptions of the training data with a beam search that takes this noise model into account. The beam search is differentiable and does not require a forced alignment step, thus the whole system is trained end-to-end. Lead2Gold can be viewed as a new loss function that can be used on top of any sequence-to-sequence deep neural network. We conduct proof-of-concept experiments on noisy transcriptions generated from letter corruptions with different noise levels. We show that Lead2Gold obtains a better ASR accuracy than a competitive baseline which does not account for the (artificially-introduced) transcription noise.

Download the Paper

AUTHORS

Written by

Awni Hannun

Adrien Dufraux

Matthijs Douze

Armelle Brun

Emmanuel Vincent

Publisher

ASRU

Related Publications

May 06, 2024

CONVERSATIONAL AI

NLP

GAIA: a benchmark for general AI assistants

Gregoire Mialon, Yann LeCun, Thomas Scialom, Clémentine Fourrier, Thomas Wolf

May 06, 2024

April 23, 2024

CONVERSATIONAL AI

GRAPHICS

Generating Illustrated Instructions

Sachit Menon, Ishan Misra, Rohit Girdhar

April 23, 2024

April 05, 2024

CONVERSATIONAL AI

NLP

MART: Improving LLM Safety with Multi-round Automatic Red-Teaming

Suyu Ge, Chunting Zhou, Rui Hou, Madian Khabsa, Yi-Chia Wang, Qifan Wang, Jiawei Han, Yuning Mao

April 05, 2024

December 07, 2023

CONVERSATIONAL AI

NLP

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Davide Testuggine, Madian Khabsa

December 07, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.