Research

Latent Credibility Analysis

May 13, 2013

Abstract

A frequent problem when dealing with data gathered from multiple sources on the web (ranging from booksellers to Wikipedia pages to stock analyst predictions) is that these sources disagree, and we must decide which of their (often mutually exclusive) claims we should accept. Current state-of-the-art information credibility algorithms known as “fact-finders” are transitive voting systems with rules specifying how votes iteratively flow from sources to claims and then back to sources.

While this is quite tractable and often effective, fact-finders also suffer from substantial limitations; in particular, a lack of transparency obfuscates their credibility decisions and makes them difficult to adapt and analyze: knowing the mechanics of how votes are calculated does not readily tell us what those votes mean, and finding, for example, that a source has a score of 6 is not informative.

We introduce a new approach to information credibility, Latent Credibility Analysis (LCA), constructing strongly principled, probabilistic models where the truth of each claim is a latent variable and the credibility of a source is captured by a set of model parameters. This gives LCA models clear semantics and modularity that make extending them to capture additional observed and latent credibility factors straightforward.

Experiments over four real-world datasets demonstrate that LCA models can outperform the best fact-finders in both unsupervised and semi-supervised settings.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.