NLP

COMPUTER VISION

Large-scale Pretraining for Visual Dialog:A Simple State-of-the-Art Baseline

July 15, 2020

Abstract

Prior work in visual dialog has focused on training deep neural models on VisDial [1] in isolation. Instead, we present an approach to leverage pretraining on related vision-language datasets before transferring to visual dialog. We adapt the recently proposed ViLBERT model [2] for multi-turn visually-grounded conversations. Our model is pretrained on the Conceptual Captions [3] and Visual Question Answering [4] datasets, and finetuned on VisDial. Our best single model outperforms prior published work by >1% absolute on NDCG and MRR. Next, we find that additional finetuning using “dense” annotations in VisDial leads to even higher NDCG – more than 10% over our base model – but hurts MRR – more than 17% below our base model! This highlights a trade-off between the two primary metrics – NDCG and MRR – which we find is due to dense annotations not correlating well with the original ground-truth answers to questions.

Download the Paper

AUTHORS

Written by

Devi Parikh

Abhishek Das

Dhruv Batra

Vishvak Murahari

Publisher

ECCV

Related Publications

November 20, 2024

CONVERSATIONAL AI

COMPUTER VISION

Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations

Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti

November 20, 2024

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 19, 2024

NLP

Adaptive Decoding via Latent Preference Optimization

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin

November 19, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.