November 18, 2020
Pre-training models on vast quantities of unlabeled data has emerged as an effective approach to improving accuracy on many NLP tasks. On the other hand, traditional machine translation has a long history of leveraging unlabeled data through noisy channel modeling. The same idea has recently been shown to achieve strong improvements for neural machine translation. Unfortunately, naıve noisy channel modeling with modern sequence to sequence models is up to an order of magnitude slower than alternatives. We address this issue by introducing efficient approximations to make inference with the noisy channel approach as fast as strong ensembles while increasing accuracy. We also show that the noisy channel approach can outperform strong pre-training results by achieving a new state of the art on WMT Romanian-English translation.
Publisher
WMT
Research Topics
June 13, 2025
Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert
June 13, 2025
June 11, 2025
Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux
June 11, 2025
June 11, 2025
Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran
June 11, 2025
June 11, 2025
Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas
June 11, 2025
Our approach
Latest news
Foundational models