THEORY

NLP

Language acquisition: do children and language models follow similar learning stages?

July 08, 2023

Abstract

During language acquisition, children follow a typical sequence of learning stages, whereby they first learn to categorize phonemes before they develop their lexicon and eventually master increasingly complex syntactic structures. However, the computational principles that lead to this learning trajectory remain largely unknown. To investigate this, we here compare the learning trajectories of deep language models to those of children. Specifically, we test whether, during its training, GPT-2 exhibits stages of language acquisition comparable to those observed in children aged between 18 months and 6 years. For this, we train 48 GPT2 models from scratch and evaluate their syntactic and semantic abilities at each training step, using 96 probes curated from the BLiMP, Zorro and BIG-Bench benchmarks. We then compare these evaluations with the behavior of 54 children during language production. Our analyses reveal three main findings. First, similarly to children, the language models tend to learn linguistic skills in a systematic order. Second, this learning scheme is parallel: the language tasks that are learned last improve from the very first training steps. Third, some – but not all – learning stages are shared between children and these language models. Overall, these results shed new light on the principles of language acquisition, and highlight important divergences in how humans and modern algorithms learn to process natural language.

Download the Paper

AUTHORS

Written by

Linnea Evanson

Yair Lakretz

Jean Remi King

Publisher

ACL

Related Publications

May 24, 2024

SPEECH & AUDIO

NLP

DOC-RAG: ASR Language Model Personalization with Domain-Distributed Co-occurrence Retrieval Augmentation

Zhe Liu

May 24, 2024

April 22, 2024

NLP

Text Quality-Based Pruning for Efficient Training of Language Models

Vasu Sharma *, Karthik Padthe *, Newsha Ardalani, Kushal Tirumala, Russ Howes, Hu Xu, Bernie Huang, Daniel Li (FAIR), Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer

April 22, 2024

April 14, 2024

SPEECH & AUDIO

NLP

Multi-task Learning for Front-end Text Processing in TTS

Yun Wang (Speech), Arthur Hinsvark, Qing He, Shun Zhang, Wonjune Kang

April 14, 2024

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.