CORE MACHINE LEARNING

Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information

July 25, 2023

Abstract

Recent works in learning-integrated optimization have shown promise in settings where the optimization problem is only partially observed or where general-purpose optimizers perform poorly without expert tuning. By learning an optimizer g to tackle these challenging problems with f as the objective, the optimization process can be substantially accelerated by leveraging past experience. The optimizer can be trained with supervision from known optimal solutions or implicitly by optimizing the compound function f ◦ g. The implicit approach may not require optimal solutions as labels and is capable of handling problem uncertainty; however, it is slow to train and deploy due to frequent calls to optimizer g during both training and testing. The training is further challenged by sparse gradients of g, especially for combinatorial solvers. To address these challenges, we propose using a smooth and learnable Landscape Surrogate M as a replacement for f ◦ g. This surrogate, learnable by neural networks, can be computed faster than the solver g, provides dense and smooth gradients during training, can generalize to unseen optimization problems, and is efficiently learned via alternating optimization. We test our approach on both synthetic problems, including shortest path and multidimensional knapsack, and real-world problems such as portfolio optimization, achieving comparable or superior objective values compared to state-of-the-art baselines while reducing the number of calls to g. Notably, our approach outperforms existing methods for computationally expensive high-dimensional problems.

Download the Paper

AUTHORS

Written by

Arman Zharmagambetov

Aaron Ferber

Taoan Huang

Bistra Dilkina

Publisher

arxiv

Research Topics

Core Machine Learning

Related Publications

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

November 06, 2024

THEORY

CORE MACHINE LEARNING

The Road Less Scheduled

Aaron Defazio, Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky

November 06, 2024

August 16, 2024

THEORY

REINFORCEMENT LEARNING

Dual Approximation Policy Optimization

Zhihan Xiong, Maryam Fazel, Lin Xiao

August 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.