June 16, 2019
Ideally, 360◦ imagery could inherit the deep convolutional neural networks (CNNs) already trained with great success on perspective projection images. However, existing methods to transfer CNNs from perspective to spherical images introduce significant computational costs and/or degradations in accuracy. We present the Kernel Transformer Network (KTN) to efficiently transfer convolution kernels from perspective images to the equirectangular projection of 360◦ images. Given a source CNN for perspective images as input, the KTN produces a function parameterized by a polar angle and kernel as output. Given a novel 360◦ image, that function in turn can compute convolutions for arbitrary layers and kernels as would the source CNN on the corresponding tangent plane projections. Distinct from all existing methods, KTNs allow model transfer: the same model can be applied to different source CNNs with the same base architecture. This enables application to multiple recognition tasks without re-training the KTN. Validating our approach with multiple source CNNs and datasets, we show that KTNs improve the state of the art for spherical convolution. KTNs successfully preserve the source CNN’s accuracy, while offering transferability, scalability to typical image resolutions, and, in many cases, a substantially lower memory footprint.
Research Topics
June 11, 2025
Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux
June 11, 2025
June 10, 2025
Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran
June 10, 2025
June 10, 2025
Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas
June 10, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Our approach
Latest news
Foundational models