April 19, 2017
User-managed-events is a popular feature on social networks. Take Facebook Events as an example: over 135 million events were created in 2015 and over 550 million people use events each month. In this work, we consider the heavy sparseness in both user and event feedback history caused by short lifespans (transiency) of events and user participation patterns in a production event system. We propose to solve the resulting cold-start problems by introducing a joint representation model to project users and events into the same latent space. Our model based on parallel Convolutional Neural Networks captures semantic meaning in event text and also utilizes heterogeneous user knowledge available in the social network. By feeding the model output as user and event representation into a combiner prediction model, we show that our representation model improves the prediction accuracy over existing techniques (+6% AUC lift). Our method provides a generic way to match heterogeneous information from different domains and applies to a wide range of applications in social networks.
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models