September 16, 2019
End-to-end approaches to automatic speech recognition, such as Listen-Attend-Spell (LAS), blend all components of a traditional speech recognizer into a unified model. Although this simplifies training and decoding pipelines, a unified model is hard to adapt when mismatch exists between training and test data, especially if this information is dynamically changing. The Contextual LAS (CLAS) framework tries to solve this problem by encoding contextual entities into fixed-dimensional embeddings and utilizing an attention mechanism to model the probabilities of seeing these entities. In this work, we improve the CLAS approach by proposing several new strategies to extract embeddings for the contextual entities. We compare these embedding extractors based on graphemic and phonetic input and/or output sequences and show that an encoder-decoder model trained jointly towards graphemes and phonemes out-performs other approaches. Leveraging phonetic information obtains better discrimination for similarly written graphemic sequences and also helps the model generalize better to graphemic sequences unseen in training. We show significant improvements over the original CLAS approach and also demonstrate that the proposed method scales much better to a large number of contextual entities across multiple domains.
Publisher
Research Topics
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
March 17, 2025
Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad
March 17, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Our approach
Latest news
Foundational models