RESEARCH

NLP

Interactive Text-to-Speech System via Joint Style Analysis

November 03, 2020

Abstract

While modern TTS technologies have made significant advancements in audio quality, there is still a lack of behavior naturalness compared to conversing with people. We propose a style-embedded TTS system that generates styled responses based on the speech query style. To achieve this, the system includes a style extraction model that extracts a style embedding from the speech query, which is then used by the TTS to produce a matching response. We faced two main challenges: 1) only a small portion of the TTS training dataset has style labels, which is needed to train a multi-style TTS that respects different style embeddings during inference. 2) The TTS system and the style extraction model have disjoint training datasets. We need consistent style labels across these two datasets so that the TTS can learn to respect the labels produced by the style extraction model during inference. To solve these, we adopted a semi-supervised approach that uses the style extraction model to create style labels for the TTS dataset and applied transfer learning to learn the style embedding jointly. Our experiment results show user preference for the styled TTS responses and demonstrate the style-embedded TTS system’s capability of mimicking the speech query style.

Download the Paper

AUTHORS

Written by

Zhaojun Yang

Christian Fuegen

Qing He

Thilo Koehler

Weiyi Zheng

Yang Gao

Publisher

Interspeech

Related Publications

November 10, 2025

RESEARCH

SPEECH & AUDIO

Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages

Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Drooff, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates

November 10, 2025

October 19, 2025

RESEARCH

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 19, 2025

October 13, 2025

REINFORCEMENT LEARNING

RESEARCH

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

RESEARCH

NLP

CWM: An Open-Weights LLM for Research on Code Generation with World Models

Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve

September 24, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.