RESEARCH

COMPUTER VISION

Instance Selection for GANs

October 26, 2020

Abstract

Recent advances in Generative Adversarial Networks (GANs) have led to their widespread adoption for the purposes of generating high quality synthetic imagery. While capable of generating photo-realistic images, these models often produce unrealistic samples which fall outside of the data manifold. Several recently proposed techniques attempt to avoid spurious samples, either by rejecting them after generation, or by truncating the model's latent space. While effective, these methods are inefficient, as a large fraction of training time and model capacity are dedicated towards samples that will ultimately go unused. In this work we propose a novel approach to improve sample quality: altering the training dataset via instance selection before model training has taken place. By refining the empirical data distribution before training, we redirect model capacity towards high-density regions, which ultimately improves sample fidelity, lowers model capacity requirements, and significantly reduces training time.

Download the Paper

AUTHORS

Written by

Michal Drozdzal

Graham Taylor

Terrance DeVries

Publisher

NeurIPS

Research Topics

Computer Vision

Related Publications

June 27, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset

Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, Praveen Chowdary, Joe Chuang, Antony D'Avirro, Jon Daly, Ning Dong, Mark Duppenthaler, Cynthia Gao, Jeff Girard, Martin Gleize, Sahir Gomez, Hongyu Gong, Srivathsan Govindarajan, Brandon Han, Sen He, Denise Hernandez, Yordan Hristov, Rongjie Huang, Hirofumi Inaguma, Somya Jain, Raj Janardhan, Qingyao Jia, Christopher Klaiber, Dejan Kovachev, Moneish Kumar, Hang Li, Yilei Li, Pavel Litvin, Wei Liu, Guangyao Ma, Jing Ma, Martin Ma, Xutai Ma, Lucas Mantovani, Sagar Miglani, Sreyas Mohan, Louis-Philippe Morency, Evonne Ng, Kam-Woh Ng, Tu Anh Nguyen, Amia Oberai, Benjamin Peloquin, Juan Pino, Jovan Popovic, Omid Poursaeed, Fabian Prada, Alice Rakotoarison, Alexander Richard, Christophe Ropers, Safiyyah Saleem, Vasu Sharma, Alex Shcherbyna, Jie Shen, Anastasis Stathopoulos, Anna Sun, Paden Tomasello, Tuan Tran, Arina Turkatenko, Bo Wan, Chao Wang, Jeff Wang, Mary Williamson, Carleigh Wood, Tao Xiang, Yilin Yang, Zhiyuan Yao, Chen Zhang, Jiemin Zhang, Xinyue Zhang, Jason Zheng, Pavlo Zhyzheria, Jan Zikes, Michael Zollhoefer

June 27, 2025

June 13, 2025

FAIRNESS

INTEGRITY

Measuring multi-calibration

Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert

June 13, 2025

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.