November 4, 2019
Conventional neural autoregressive decoding commonly assumes a fixed left-to-right generation order, which may be sub-optimal. In this work, we propose a novel decoding algorithm – InDIGO – which supports flexible sequence generation in arbitrary orders through insertion operations. We extend Transformer, a state-of-the-art sequence generation model, to efficiently implement the proposed approach, enabling it to be trained with either a pre-defined generation order or adaptive orders obtained from beam-search. Experiments on four real-world tasks, including word order recovery, machine translation, image caption and code generation, demonstrate that our algorithm can generate sequences following arbitrary orders, while achieving competitive or even better performance compared to the conventional left-to-right generation. The generated sequences show that InDIGO adopts adaptive generation orders based on input information.
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models