Research

NLP

Inferring and Executing Programs for Visual Reasoning

October 22, 2017

Abstract

Existing methods for visual reasoning attempt to directly map inputs to outputs using black-box architectures without explicitly modeling the underlying reasoning processes. As a result, these black-box models often learn to exploit biases in the data rather than learning to perform visual reasoning. Inspired by module networks, this paper proposes a model for visual reasoning that consists of a program generator that constructs an explicit representation of the reasoning process to be performed, and an execution engine that executes the resulting program to produce an answer. Both the program generator and the execution engine are implemented by neural networks, and are trained using a combination of backpropagation and REINFORCE. Using the CLEVR benchmark for visual reasoning, we show that our model significantly outperforms strong baselines and generalizes better in a variety of settings.

Download the Paper

Related Publications

October 18, 2025

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 18, 2025

October 13, 2025

Reinforcement Learni9ng

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

NLP

CWM: An Open-Weights LLM for Research on Code Generation with World Models

Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve

September 24, 2025

September 23, 2025

NLP

Code World Model Preparedness Report

Daniel Song, Peter Ney, Cristina Menghini, Faizan Ahmad, Aidan Boyd, Nathaniel Li, Ziwen Han, Jean-Christophe Testud, Saisuke Okabayashi, Maeve Ryan, Jinpeng Miao, Hamza Kwisaba, Felix Binder, Spencer Whitman, Jim Gust, Esteban Arcaute, Dhaval Kapil, Jacob Kahn, Ayaz Minhas, Tristan Goodman, Lauren Deason, Alexander Vaughan, Shengjia Zhao, Summer Yue

September 23, 2025

October 31, 2019

NLP

Facebook AI's WAT19 Myanmar-English Translation Task Submission

Peng-Jen Chen, Jiajun Shen, Matt Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wenzek, Myle Ott, Marc’Aurelio Ranzato

October 31, 2019

March 14, 2019

NLP

On the Pitfalls of Measuring Emergent Communication | Facebook AI Research

Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, Yann Dauphin

March 14, 2019

January 13, 2020

NLP

Scaling up online speech recognition using ConvNets | Facebook AI Research

Vineel Pratap, Qiantong Xu, Jacob Kahn, Gilad Avidov, Tatiana Likhomanenko, Awni Hannun, Vitaliy Liptchinsky, Gabriel Synnaeve, Ronan Collobert

January 13, 2020

April 30, 2018

NLP

Computer Vision

Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent | Facebook AI Research

Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller, Arthur Szlam, Douwe Kiela, Jason Weston

April 30, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.