ROBOTICS

REINFORCEMENT LEARNING

In-Hand Object Rotation via Rapid Motor Adaptation

October 17, 2022

Abstract

Generalized in-hand manipulation has long been an unsolved challenge of robotics. As a small step towards this grand goal, we demonstrate how to design and learn a simple adaptive controller to achieve in-hand object rotation using only fingertips. The controller is trained entirely in simulation on only cylindrical objects, which then – without any fine-tuning – can be directly deployed to a real robot hand to rotate dozens of objects with diverse sizes, shapes, and weights over the z-axis. This is achieved via rapid online adaptation of the robot’s controller to the object properties using only proprioception history. Furthermore, natural and stable finger gaits automatically emerge from training the control policy via reinforcement learning. Code and more videos are available at our Website.

Download the Paper

AUTHORS

Written by

Roberto Calandra

Haozhi Qi

Jitendra Malik

Ashish Kumar

Yi Ma

Publisher

CoRL

Research Topics

Reinforcement Learning

Robotics

Related Publications

July 01, 2024

REINFORCEMENT LEARNING

Behaviour Distillation

Andrei Lupu, Chris Lu, Robert Lange, Jakob Foerster

July 01, 2024

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

May 06, 2024

ROBOTICS

Bootstrapping Linear Models for Fast Online Adaptation in Human-Agent Collaboration

Ben Newman, Christopher Paxton, Kris Kitani, Henny Admoni

May 06, 2024

April 30, 2024

REINFORCEMENT LEARNING

Multi-Agent Diagnostics for Robustness via Illuminated Diversity

Mikayel Samvelyan, Minqi Jiang, Davide Paglieri, Jack Parker-Holder, Tim Rocktäschel

April 30, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.