ROBOTICS

REINFORCEMENT LEARNING

In-Hand Object Rotation via Rapid Motor Adaptation

October 17, 2022

Abstract

Generalized in-hand manipulation has long been an unsolved challenge of robotics. As a small step towards this grand goal, we demonstrate how to design and learn a simple adaptive controller to achieve in-hand object rotation using only fingertips. The controller is trained entirely in simulation on only cylindrical objects, which then – without any fine-tuning – can be directly deployed to a real robot hand to rotate dozens of objects with diverse sizes, shapes, and weights over the z-axis. This is achieved via rapid online adaptation of the robot’s controller to the object properties using only proprioception history. Furthermore, natural and stable finger gaits automatically emerge from training the control policy via reinforcement learning. Code and more videos are available at our Website.

Download the Paper

AUTHORS

Written by

Roberto Calandra

Haozhi Qi

Jitendra Malik

Ashish Kumar

Yi Ma

Publisher

CoRL

Research Topics

Reinforcement Learning

Robotics

Related Publications

October 31, 2024

HUMAN & MACHINE INTELLIGENCE

ROBOTICS

Digitizing Touch with an Artificial Multimodal Fingertip

Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra

October 31, 2024

October 31, 2024

ROBOTICS

PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks

Matthew Chang, Gunjan Chhablani, Alexander William Clegg, Mikael Dallaire Cote, Ruta Desai, Michal Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth Patki, Ishita Prasad, Xavi Puig, Akshara Rai, Ram Ramrakhya, Daniel Tran, Joanne Truong, John Turner, Eric Undersander, Jimmy Yang

October 31, 2024

October 31, 2024

ROBOTICS

Sparsh: Self-supervised touch representations for vision-based tactile sensing

Carolina Higuera, Akash Sharma, Krishna Bodduluri, Taosha Fan, Patrick Lancaster, Mrinal Kalakrishnan, Michael Kaess, Byron Boots, Mike Lambeta, Tingfan Wu, Mustafa Mukadam

October 31, 2024

August 16, 2024

THEORY

REINFORCEMENT LEARNING

Dual Approximation Policy Optimization

Zhihan Xiong, Maryam Fazel, Lin Xiao

August 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.