ROBOTICS

In-Hand Gravitational Pivoting Using Tactile Sensing

October 18, 2022

Abstract

We study gravitational pivoting, a constrained version of in-hand manipulation, where we aim to control the rotation of an object around the grip point of a parallel gripper. To achieve this, instead of controlling the gripper to avoid slip, we embrace slip to allow the object to rotate in-hand. We collect two real-world datasets, a static tracking dataset and a controller-in-theloop dataset, both annotated with object angle and angular velocity labels. Both datasets contain force-based tactile information on ten different household objects. We train an LSTM model to predict the angular position and velocity of the held object from purely tactile data. We integrate this model with a controller that opens and closes the gripper allowing the object to rotate to desired relative angles. We conduct real-world experiments where the robot is tasked to achieve a relative target angle. We show that our approach outperforms a sliding-window based MLP in a zero-shot generalization setting with unseen objects. Furthermore, we show a 16.6% improvement in performance when the LSTM model is fine-tuned on a small set of data collected with both the LSTM model and the controller in-the-loop. Code and videos are available at https://rhys-newbury.github.io/projects/pivoting/

Download the Paper

AUTHORS

Written by

Mustafa Mukadam

Akansel Cosgun

Dana Kulic

Jason Toskov

Rhys Newbury

Publisher

CoRL

Research Topics

Robotics

Related Publications

May 06, 2024

ROBOTICS

Bootstrapping Linear Models for Fast Online Adaptation in Human-Agent Collaboration

Ben Newman, Christopher Paxton, Kris Kitani, Henny Admoni

May 06, 2024

April 02, 2024

ROBOTICS

REINFORCEMENT LEARNING

MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar

April 02, 2024

March 26, 2024

ROBOTICS

REINFORCEMENT LEARNING

When should we prefer Decision Transformers for Offline Reinforcement Learning?

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, Amy Zhang

March 26, 2024

March 12, 2024

ROBOTICS

Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots

Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Jimmy Yang, Ruslan Partsey, Ruta Desai, Alexander William Clegg, Tiffany Min, Vladimír Vondruš, Theo Gervet, Vincent-Pierre Berges, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, Roozbeh Mottaghi

March 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.