June 14, 2020
Popularized as ‘bottom-up’ attention, bounding box (or region) based visual features have recently surpassed vanilla grid-based convolutional features as the de facto standard for vision and language tasks like visual question answering (VQA). However, it is not clear whether the advantages of regions (e.g. better localization) are the key reasons for the success of bottom-up attention. In this paper, we revisit grid features for VQA, and find they can work surprisingly well – running more than an order of magnitude faster with the same accuracy (e.g. if pre-trained in a similar fashion). Through extensive experiments, we verify that this observation holds true across different VQA models, datasets, and generalizes well to other tasks like image captioning. As grid features make the model design and training process much simpler, this enables us to train them end-to-end and also use a more flexible network design. We learn VQA models end-to-end, from pixels directly to answers, and show that strong performance is achievable without using any region annotations in pre-training. We hope our findings help further improve the scientific understanding and the practical application of VQA. Code and features will be made available.
Written by
Huaizu Jiang
Ishan Misra
Marcus Rohrbach
Erik Learned-Miller
Xinlei Chen
Publisher
Conference on Computer Vision and Pattern Recognition (CVPR)
Research Topics
June 11, 2025
Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux
June 11, 2025
June 10, 2025
Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran
June 10, 2025
June 10, 2025
Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas
June 10, 2025
April 14, 2025
Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu
April 14, 2025
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Our approach
Latest news
Foundational models