January 09, 2021
We study the problem of exploring an unknown environment when no reward function is provided to the agent. Building on the incremental exploration setting introduced by Lim and Auer (2012), we define the objective of learning the set of $\epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps (in expectation) from a reference state $s_0$. In this paper, we introduce a novel model-based approach that interleaves discovering new states from $s_0$ and improving the accuracy of a model estimate that is used to compute goal-conditioned policies. The resulting algorithm, DisCo, achieves a sample complexity scaling as $\widetilde{O}(L^5 S_{L+\epsilon} \Gamma_{L+\epsilon} A \epsilon^{-2})$, where $A$ is the number of actions, $S_{L+\epsilon}$ is the number of states that are incrementally reachable from $s_0$ in $L+\epsilon$ steps, and $\Gamma_{L+\epsilon}$ is the branching factor of the dynamics over such states. This improves over the algorithm proposed in (Lim and Auer, 2012) in both $\epsilon$ and $L$ at the cost of an extra $\Gamma_{L+\epsilon}$ factor, which is small in most environments of interest. Furthermore, DisCo is the first algorithm that can return an $\epsilon/c_{\min}$-optimal policy for any cost sensitive shortest-path problem defined on the $L$-reachable states with minimum cost $c_{\min}$. Finally, we report preliminary empirical results confirming our theoretical findings.
Written by
Jean Tarbouriech
Alessandro Lazaric
Matteo Pirotta
Michal Valko
Publisher
NeurIPS
June 27, 2025
Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, Praveen Chowdary, Joe Chuang, Antony D'Avirro, Jon Daly, Ning Dong, Mark Duppenthaler, Cynthia Gao, Jeff Girard, Martin Gleize, Sahir Gomez, Hongyu Gong, Srivathsan Govindarajan, Brandon Han, Sen He, Denise Hernandez, Yordan Hristov, Rongjie Huang, Hirofumi Inaguma, Somya Jain, Raj Janardhan, Qingyao Jia, Christopher Klaiber, Dejan Kovachev, Moneish Kumar, Hang Li, Yilei Li, Pavel Litvin, Wei Liu, Guangyao Ma, Jing Ma, Martin Ma, Xutai Ma, Lucas Mantovani, Sagar Miglani, Sreyas Mohan, Louis-Philippe Morency, Evonne Ng, Kam-Woh Ng, Tu Anh Nguyen, Amia Oberai, Benjamin Peloquin, Juan Pino, Jovan Popovic, Omid Poursaeed, Fabian Prada, Alice Rakotoarison, Alexander Richard, Christophe Ropers, Safiyyah Saleem, Vasu Sharma, Alex Shcherbyna, Jie Shen, Anastasis Stathopoulos, Anna Sun, Paden Tomasello, Tuan Tran, Arina Turkatenko, Bo Wan, Chao Wang, Jeff Wang, Mary Williamson, Carleigh Wood, Tao Xiang, Yilin Yang, Zhiyuan Yao, Chen Zhang, Jiemin Zhang, Xinyue Zhang, Jason Zheng, Pavlo Zhyzheria, Jan Zikes, Michael Zollhoefer
June 27, 2025
June 13, 2025
Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert
June 13, 2025
June 11, 2025
Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux
June 11, 2025
June 11, 2025
Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran
June 11, 2025
Our approach
Latest news
Foundational models