Improved Road Connectivity by Joint Learning of Orientation and Segmentation

June 20, 2019

Abstract

Road network extraction from satellite images often produce fragmented road segments leading to road maps unfit for real applications. Pixel-wise classification fails to predict topologically correct and connected road masks due to the absence of connectivity supervision and difficulty in enforcing topological constraints. In this paper, we propose a connectivity task called Orientation Learning, motivated by the human behavior of annotating roads by tracing it at a specific orientation. We also develop a stacked multi-branch convolutional module to effectively utilize the mutual information between orientation learning and segmentation tasks. These contributions ensure that the model predicts topologically correct and connected road masks. We also propose Connectivity Refinement approach to further enhance the estimated road networks. The refinement model is pre-trained to connect and refine the corrupted ground-truth masks and later fine-tuned to enhance the predicted road masks. We demonstrate the advantages of our approach on two diverse road extraction datasets SpaceNet and DeepGlobe. Our approach improves over the state-of-the-art techniques by 9% and 7.5% in road topology metric on SpaceNet and DeepGlobe, respectively.

Download the Paper

AUTHORS

Written by

Guan Pang

Anil Batra

Manohar Paluri

Saikat Basu

C V Jawahar

Suriya Singh

Publisher

CVPR

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.