Research

Improved Regret Bounds for Thompson Sampling in Linear Quadratic Control

July 12, 2018

Abstract

Thompson sampling (TS) is an effective approach to trade off exploration and exploration in reinforcement learning. Despite its empirical success and recent advances, its theoretical analysis is often limited to the Bayesian setting, finite state-action spaces, or finite-horizon problems. In this paper, we study an instance of TS in the challenging setting of the infinite-horizon linear quadratic (LQ) control, which models problems with continuous state-action variables, linear dynamics, and quadratic cost. In particular, we analyze the regret in the frequentist sense (i.e., for a fixed unknown environment) in one-dimensional systems. We derive the first O(√T) frequentist regret bound for this problem, thus significantly improving the O(T2/3) bound of Abeille & Lazaric (2017) and matching the frequentist performance derived by Abbasi-Yadkori & Szepesvári (2011) for an optimistic approach and the Bayesian result of Ouyang et al. (2017). We obtain this result by developing a novel bound on the regret due to policy switches, which holds for LQ systems of any dimensionality and it allows updating the parameters and the policy at each step, thus overcoming previous limitations due to lazy updates. Finally, we report numerical simulations supporting the conjecture that our result extends to multi-dimensional systems.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.