COMPUTER VISION

Imagine yourself: Tuning-Free Personalized Image Generation

July 23, 2024

Abstract

Diffusion models have demonstrated remarkable efficacy across various image-to-image tasks. In this research, we introduce Imagine yourself, a state-of-the-art model designed for personalized image generation. Unlike conventional tuning-based personalization techniques, Imagine yourself operates as a tuning-free model, enabling all users to leverage a shared framework without individualized adjustments. Moreover, previous work met challenges balancing identity preservation, following complex prompts and preserving good visual quality, resulting in models having strong copy-paste effect of the reference images. Thus, they can hardly generate images following prompts that require significant changes to the reference image, e.g., changing facial expression, head and body poses, and the diversity of the generated images is low. To address these limitations, our proposed method introduces 1) a new synthetic paired data generation mechanism to encourage image diversity, 2) a fully parallel attention architecture with three text encoders and a fully trainable vision encoder to improve the text faithfulness, and 3) a novel coarse-to-fine multi-stage finetuning methodology that gradually pushes the boundary of visual quality. Our study demonstrates that Imagine yourself surpasses the state-of-the-art personalization model, exhibiting superior capabilities in identity preservation, visual quality, and text alignment. This model establishes a robust foundation for various personalization applications. Human evaluation results validate the model’s SOTA superiority across all aspects (identity preservation, text faithfulness, and visual appeal) compared to the previous personalization models.

Download the Paper

AUTHORS

Written by

Zecheng He

Bo Sun

Felix Xu

Haoyu Ma

Ankit Ramchandani

Vincent Cheung

Siddharth Shah

Anmol Kalia

Ning Zhang

Peizhao Zhang

Roshan Sumbaly

Peter Vajda

Animesh Sinha

Publisher

Meta AI

Research Topics

Computer Vision

Related Publications

October 19, 2025

COMPUTER VISION

Enrich and Detect: Video Temporal Grounding with Multimodal LLMs

Shraman Pramanick, Effrosyni Mavroudi, Yale Song, Rama Chellappa, Lorenzo Torresani, Triantafyllos Afouras

October 19, 2025

October 19, 2025

RESEARCH

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 19, 2025

September 23, 2025

RESEARCH

NLP

MetaEmbed: Scaling Multimodal Retrieval at Test-Time with Flexible Late Interactions

Zilin Xiao, Qi Ma, Mengting Gu, Jason Chen, Xintao Chen, Vicente Ordonez, Vijai Mohan

September 23, 2025

August 14, 2025

RESEARCH

COMPUTER VISION

DINOv3

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose, Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Theo Moutakanni, Leonel Sentana, Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Herve Jegou, Patrick Labatut, Piotr Bojanowski

August 14, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.