July 23, 2024
Diffusion models have demonstrated remarkable efficacy across various image-to-image tasks. In this research, we introduce Imagine yourself, a state-of-the-art model designed for personalized image generation. Unlike conventional tuning-based personalization techniques, Imagine yourself operates as a tuning-free model, enabling all users to leverage a shared framework without individualized adjustments. Moreover, previous work met challenges balancing identity preservation, following complex prompts and preserving good visual quality, resulting in models having strong copy-paste effect of the reference images. Thus, they can hardly generate images following prompts that require significant changes to the reference image, e.g., changing facial expression, head and body poses, and the diversity of the generated images is low. To address these limitations, our proposed method introduces 1) a new synthetic paired data generation mechanism to encourage image diversity, 2) a fully parallel attention architecture with three text encoders and a fully trainable vision encoder to improve the text faithfulness, and 3) a novel coarse-to-fine multi-stage finetuning methodology that gradually pushes the boundary of visual quality. Our study demonstrates that Imagine yourself surpasses the state-of-the-art personalization model, exhibiting superior capabilities in identity preservation, visual quality, and text alignment. This model establishes a robust foundation for various personalization applications. Human evaluation results validate the model’s SOTA superiority across all aspects (identity preservation, text faithfulness, and visual appeal) compared to the previous personalization models.
Written by
Zecheng He
Ankit Ramchandani
Vincent Cheung
Siddharth Shah
Anmol Kalia
Ning Zhang
Peizhao Zhang
Peter Vajda
Animesh Sinha
Publisher
Meta AI
Research Topics
November 11, 2025
Irene Wang, Mostafa Elhouishi, Ekin Sumbul, Samuel Hsia, Daniel Jiang, Newsha Ardalani, Divya Mahajan, Carole-Jean Wu, Bilge Acun
November 11, 2025
October 19, 2025
Shraman Pramanick, Effrosyni Mavroudi, Yale Song, Rama Chellappa, Lorenzo Torresani, Triantafyllos Afouras
October 19, 2025
October 19, 2025
Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal
October 19, 2025
September 23, 2025
Zilin Xiao, Qi Ma, Mengting Gu, Jason Chen, Xintao Chen, Vicente Ordonez, Vijai Mohan
September 23, 2025

Our approach
Latest news
Foundational models