COMPUTER VISION

ImageBind: One Embedding Space To Bind Them All

May 09, 2023

Abstract

We present IMAGEBIND, an approach to learn a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data. We show that all combinations of paired data are not necessary to train such a joint embedding, and only image-paired data is sufficient to bind the modalities together. IMAGEBIND can leverage recent large scale vision-language models, and extends their zeroshot capabilities to new modalities just by using their natural pairing with images. It enables novel emergent applications ‘out-of-the-box’ including cross-modal retrieval, composing modalities with arithmetic, cross-modal detection and generation. The emergent capabilities improve with the strength of the image encoder and we set a new state-of-theart on emergent zero-shot recognition tasks across modalities, outperforming specialist supervised models. Finally, we show strong few-shot recognition results outperforming prior work, and that IMAGEBIND serves as a new way to evaluate vision models for visual and non-visual tasks

Download the Paper

AUTHORS

Written by

Rohit Girdhar

Alaa El-Nouby

Zhuang Liu

Mannat Singh

Kalyan Vasudev Alwala

Armand Joulin

Ishan Misra

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

August 20, 2024

CONVERSATIONAL AI

NLP

Lumos : Empowering Multimodal LLMs with Scene Text Recognition

Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar

August 20, 2024

August 15, 2024

INTEGRITY

COMPUTER VISION

Guarantees of confidentiality via Hammersley-Chapman-Robbins bounds

Kamalika Chaudhuri, Chuan Guo, Laurens van der Maaten, Saeed Mahloujifar, Mark Tygert

August 15, 2024

July 29, 2024

COMPUTER VISION

SAM 2: Segment Anything in Images and Videos

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chay Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, Christoph Feichtenhofer

July 29, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.