COMPUTER VISION

Identifying and Disentangling Spurious Features in Pretrained Image Representations

October 12, 2023

Abstract

Neural networks employ spurious correlations in their predictions, resulting in decreased performance when these correlations do not hold. Recent works suggest fixing pretrained representations and training a classification head that does not use spurious features. We investigate how spurious features are represented in pretrained representations and explore strategies for removing information about spurious features. Considering the Waterbirds dataset and a few pretrained representations, we find that even with full knowledge of spurious features, their removal is not straightforward due to entangled representation. To address this, we propose a linear autoencoder training method to separate the representation into core, spurious, and other features. We propose two effective spurious feature removal approaches that are applied to the encoding and significantly improve classification performance measured by worst-group accuracy.

Download the Paper

AUTHORS

Written by

Aram H. Markosyan

Hrant Khachatrian

Hrayr Harutyunyan

Rafayel Darbinyan

Publisher

ICML

Research Topics

Computer Vision

Related Publications

July 23, 2024

COMPUTER VISION

Imagine yourself: Tuning-Free Personalized Image Generation

Zecheng He, Bo Sun, Felix Xu, Haoyu Ma, Ankit Ramchandani, Vincent Cheung, Siddharth Shah, Anmol Kalia, Ning Zhang, Peizhao Zhang, Roshan Sumbaly, Peter Vajda, Animesh Sinha

July 23, 2024

July 23, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

The Llama 3 Herd of Models

Llama team

July 23, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials

Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir Kleiman, Emilien Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, David Novotny

July 02, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D Gen

Raphael Bensadoun, Tom Monnier, Yanir Kleiman, Filippos Kokkinos, Yawar Siddiqui, Mahendra Kariya, Omri Harosh, Roman Shapovalov, Emilien Garreau, Animesh Karnewar, Ang Cao, Idan Azuri, Iurii Makarov, Eric-Tuan Le, Antoine Toisoul, David Novotny, Oran Gafni, Natalia Neverova, Andrea Vedaldi

July 02, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.