RESEARCH

SPEECH & AUDIO

Identifying Analogies Across Domains

April 30, 2018

Abstract

Identifying analogies across domains without supervision is an important task for artificial intelligence. Recent advances in cross domain image mapping have concentrated on translating images across domains. Although the progress made is impressive, the visual fidelity many times does not suffice for identifying the matching sample from the other domain. In this paper, we tackle this very task of finding exact analogies between datasets i.e. for every image from domain A find an analogous image in domain B. We present a matching-by-synthesis approach: AN-GAN, and show that it outperforms current techniques. We further show that the cross-domain mapping task can be broken into two parts: domain alignment and learning the mapping function. The tasks can be iteratively solved, and as the alignment is improved, the unsupervised translation function reaches quality comparable to full supervision.

Download the Paper

AUTHORS

Written by

Yedid Hoshen

Lior Wolf

Publisher

ICLR

Related Publications

May 24, 2024

SPEECH & AUDIO

NLP

DOC-RAG: ASR Language Model Personalization with Domain-Distributed Co-occurrence Retrieval Augmentation

Zhe Liu

May 24, 2024

April 14, 2024

SPEECH & AUDIO

NLP

Multi-task Learning for Front-end Text Processing in TTS

Yun Wang (Speech), Arthur Hinsvark, Qing He, Shun Zhang, Wonjune Kang

April 14, 2024

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

March 05, 2024

SPEECH & AUDIO

Generative Pre-training for Speech with Flow Matching

Alex Liu, Matt Le, Apoorv Vyas, Bowen Shi, Andros Tjandra, Wei-Ning Hsu

March 05, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.