RESEARCH

SPEECH & AUDIO

Identifying Analogies Across Domains

April 30, 2018

Abstract

Identifying analogies across domains without supervision is an important task for artificial intelligence. Recent advances in cross domain image mapping have concentrated on translating images across domains. Although the progress made is impressive, the visual fidelity many times does not suffice for identifying the matching sample from the other domain. In this paper, we tackle this very task of finding exact analogies between datasets i.e. for every image from domain A find an analogous image in domain B. We present a matching-by-synthesis approach: AN-GAN, and show that it outperforms current techniques. We further show that the cross-domain mapping task can be broken into two parts: domain alignment and learning the mapping function. The tasks can be iteratively solved, and as the alignment is improved, the unsupervised translation function reaches quality comparable to full supervision.

Download the Paper

AUTHORS

Written by

Yedid Hoshen

Lior Wolf

Publisher

ICLR

Related Publications

August 01, 2024

SPEECH & AUDIO

NLP

Toward Joint Language Modeling for Speech Units and Text

Ju-Chieh Chou, Wei-Ning Hsu, Karen Livescu, Arun Babu, Alexis Conneau, Alexei Baevski, Michael Auli

August 01, 2024

July 23, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

The Llama 3 Herd of Models

Llama team

July 23, 2024

June 25, 2024

SPEECH & AUDIO

NLP

Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation

Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee

June 25, 2024

June 05, 2024

SPEECH & AUDIO

Proactive Detection of Voice Cloning with Localized Watermarking

Robin San Romin, Pierre Fernandez, Hady Elsahar, Alexandre Deffosez, Teddy Furon, Tuan Tran

June 05, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.