April 30, 2018
Identifying analogies across domains without supervision is an important task for artificial intelligence. Recent advances in cross domain image mapping have concentrated on translating images across domains. Although the progress made is impressive, the visual fidelity many times does not suffice for identifying the matching sample from the other domain. In this paper, we tackle this very task of finding exact analogies between datasets i.e. for every image from domain A find an analogous image in domain B. We present a matching-by-synthesis approach: AN-GAN, and show that it outperforms current techniques. We further show that the cross-domain mapping task can be broken into two parts: domain alignment and learning the mapping function. The tasks can be iteratively solved, and as the alignment is improved, the unsupervised translation function reaches quality comparable to full supervision.
Written by
Yedid Hoshen
Lior Wolf
Publisher
ICLR
August 01, 2024
Ju-Chieh Chou, Wei-Ning Hsu, Karen Livescu, Arun Babu, Alexis Conneau, Alexei Baevski, Michael Auli
August 01, 2024
July 23, 2024
Llama team
July 23, 2024
June 25, 2024
Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee
June 25, 2024
June 05, 2024
Robin San Romin, Pierre Fernandez, Hady Elsahar, Alexandre Deffosez, Teddy Furon, Tuan Tran
June 05, 2024
Foundational models
Latest news
Foundational models