April 30, 2018
Identifying analogies across domains without supervision is an important task for artificial intelligence. Recent advances in cross domain image mapping have concentrated on translating images across domains. Although the progress made is impressive, the visual fidelity many times does not suffice for identifying the matching sample from the other domain. In this paper, we tackle this very task of finding exact analogies between datasets i.e. for every image from domain A find an analogous image in domain B. We present a matching-by-synthesis approach: AN-GAN, and show that it outperforms current techniques. We further show that the cross-domain mapping task can be broken into two parts: domain alignment and learning the mapping function. The tasks can be iteratively solved, and as the alignment is improved, the unsupervised translation function reaches quality comparable to full supervision.
Written by
Yedid Hoshen
Lior Wolf
Publisher
ICLR
October 16, 2024
Movie Gen Team
October 16, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
September 26, 2024
Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa
September 26, 2024
August 23, 2024
Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria
August 23, 2024
Foundational models
Latest news
Foundational models