May 7, 2021
Fairness and robustness are two important concerns for federated learning systems. In this work, we identify that robustness to data and model poisoning attacks and fairness, measured as the uniformity of performance across devices, are competing constraints in statistically heterogeneous networks. To address these constraints, we propose employing a simple, general framework for personalized federated learning, Ditto, and develop a scalable solver for it. Theoretically, we analyze the ability of Ditto to achieve fairness and robustness simultaneously on a class of linear problems. Empirically, across a suite of federated datasets, we show that Ditto not only achieves competitive performance relative to recent personalization methods, but also enables more accurate, robust, and fair models relative to state-of-the-art fair or robust baselines.
Written by
Tian Li
Shengyuan Hu
Ahmad Beirami
Virginia Smith
Publisher
ICLR 2021
Research Topics
August 08, 2022
Ashkan Yousefpour, Akash Bharadwaj, Alex Sablayrolles, Graham Cormode, Igor Shilov, Ilya Mironov, Jessica Zhao, John Nguyen, Karthik Prasad, Mani Malek, Sayan Ghosh
August 08, 2022
December 06, 2018
Jeff Johnson
December 06, 2018
June 22, 2015
Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, Yann LeCun
June 22, 2015
December 07, 2018
December 07, 2018
March 02, 2020
Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, Virginia Smith
March 02, 2020
September 01, 2020
Ashkan Yousefpour, Brian Q. Nguyen, Siddartha Devic, Guanhua Wang, Aboudy Kreidieh, Hans Lobel, Alexandre M. Bayen, Jason P. Jue
September 01, 2020
Foundational models
Latest news
Foundational models