RESEARCH

SPEECH & AUDIO

Hyper-Graph-Network Decoders for Block Codes

December 05, 2019

Abstract

Neural decoders were shown to outperform classical message passing techniques for short BCH codes. In this work, we extend these results to much larger families of algebraic block codes, by performing message passing with graph neural networks. The parameters of the sub-network at each variable-node in the Tanner graph are obtained from a hypernetwork that receives the absolute values of the current message as input. To add stability, we employ a simplified version of the arctanh activation that is based on a high order Taylor approximation of this activation function. Our results show that for a large number of algebraic block codes, from diverse families of codes (BCH, LDPC, Polar), the decoding obtained with our method outperforms the vanilla belief propagation method as well as other learning techniques from the literature.

Download the Paper

AUTHORS

Written by

Lior Wolf

Eliya Nachmani

Publisher

NeurIPS

Related Publications

February 07, 2025

RESEARCH

SPEECH & AUDIO

Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu

February 07, 2025

February 06, 2025

RESEARCH

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

RESEARCH

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.