Research

NLP

Hierarchical Text Generation and Planning for Strategic Dialogue

July 10, 2018

Abstract

End-to-end models for goal-orientated dialogue are challenging to train, because linguistic and strategic aspects are entangled in latent state vectors. We introduce an approach to learning representations of messages in dialogues by maximizing the likelihood of subsequent sentences and actions, which decouples the semantics of the dialogue utterance from its linguistic realization. We then use these latent sentence representations for hierarchical language generation, planning and reinforcement learning. Experiments show that our approach increases the end-task reward achieved by the model, improves the effectiveness of long-term planning using rollouts, and allows self-play reinforcement learning to improve decision making without diverging from human language. Our hierarchical latent-variable model outperforms previous work both linguistically and strategically.

Download the Paper

Related Publications

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

December 06, 2020

NLP

Pre-training via Paraphrasing

Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang

December 06, 2020

November 30, 2020

NLP

Where Are You? Localization from Embodied Dialog

Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee

November 30, 2020

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.