REINFORCEMENT LEARNING

Hierarchical Skills for Efficient Exploration

December 05, 2021

Abstract

In reinforcement learning, pre-trained low-level skills have the potential to greatly facilitate exploration. However, prior knowledge of the downstream task is required to strike the right balance between generality (fine-grained control) and specificity (faster learning) in skill design. In previous work on continuous control, the sensitivity of methods to this trade-off has not been addressed explicitly, as locomotion provides a suitable prior for navigation tasks, which have been of foremost interest. In this work, we analyze this trade-off for low-level policy pre-training with a new benchmark suite of diverse, sparse-reward tasks for bipedal robots. We alleviate the need for prior knowledge by proposing a hierarchical skill learning framework that acquires skills of varying complexity in an unsupervised manner. For utilization on downstream tasks, we present a three-layered hierarchical learning algorithm to automatically trade off between general and specific skills as required by the respective task. In our experiments, we show that our approach performs this trade-off effectively and achieves better results than current state-of-the-art methods for end-to-end hierarchical reinforcement learning and unsupervised skill discovery.

Download the Paper

AUTHORS

Written by

Jonas Gehring

Gabriel Synnaeve

andreas krause

Nicolas Usunier

Publisher

NeurIPS

Research Topics

Reinforcement Learning

Related Publications

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 30, 2024

REINFORCEMENT LEARNING

Multi-Agent Diagnostics for Robustness via Illuminated Diversity

Mikayel Samvelyan, Minqi Jiang, Davide Paglieri, Jack Parker-Holder, Tim Rocktäschel

April 30, 2024

March 26, 2024

ROBOTICS

REINFORCEMENT LEARNING

When should we prefer Decision Transformers for Offline Reinforcement Learning?

Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, Amy Zhang

March 26, 2024

January 06, 2024

RANKING AND RECOMMENDATIONS

REINFORCEMENT LEARNING

Learning to bid and rank together in recommendation systems

Geng Ji, Wentao Jiang, Jiang Li, Fahmid Morshed Fahid, Zhengxing Chen, Yinghua Li, Jun Xiao, Chongxi Bao, Zheqing (Bill) Zhu

January 06, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.