REINFORCEMENT LEARNING

Hierarchical Skills for Efficient Exploration

December 05, 2021

Abstract

In reinforcement learning, pre-trained low-level skills have the potential to greatly facilitate exploration. However, prior knowledge of the downstream task is required to strike the right balance between generality (fine-grained control) and specificity (faster learning) in skill design. In previous work on continuous control, the sensitivity of methods to this trade-off has not been addressed explicitly, as locomotion provides a suitable prior for navigation tasks, which have been of foremost interest. In this work, we analyze this trade-off for low-level policy pre-training with a new benchmark suite of diverse, sparse-reward tasks for bipedal robots. We alleviate the need for prior knowledge by proposing a hierarchical skill learning framework that acquires skills of varying complexity in an unsupervised manner. For utilization on downstream tasks, we present a three-layered hierarchical learning algorithm to automatically trade off between general and specific skills as required by the respective task. In our experiments, we show that our approach performs this trade-off effectively and achieves better results than current state-of-the-art methods for end-to-end hierarchical reinforcement learning and unsupervised skill discovery.

Download the Paper

AUTHORS

Written by

Jonas Gehring

Gabriel Synnaeve

andreas krause

Nicolas Usunier

Publisher

NeurIPS

Research Topics

Reinforcement Learning

Related Publications

October 13, 2025

REINFORCEMENT LEARNING

RESEARCH

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

CONVERSATIONAL AI

REINFORCEMENT LEARNING

Compute as Teacher: Turning Inference Compute Into Reference-Free Supervision

Dulhan Jayalath, Shashwat Goel, Thomas Simon Foster, Parag Jain, Suchin Gururangan, Cheng Zhang, Anirudh Goyal, Alan Schelten

September 24, 2025

September 08, 2025

THEORY

REINFORCEMENT LEARNING

Understanding Reinforcement Learning for Model Training, and future directions with GRAPE

Rohit Patel

September 08, 2025

September 02, 2025

REINFORCEMENT LEARNING

NLP

Jointly Reinforcing Diversity and Quality in Language Model Generations

Tianjian Li, Yiming Zhang, Ping Yu, Swarnadeep Saha, Daniel Khashabi, Jason Weston, Jack Lanchantin, Tianlu Wang

September 02, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.