RESEARCH

COMPUTER VISION

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

May 14, 2020

Abstract

Visual localization is critical to many applications in computer vision and robotics. To address single-image RGB localization, state-of-the-art feature-based methods match local descriptors between a query image and a pre-built 3D model. Recently, deep neural networks have been exploited to regress the mapping between raw pixels and 3D coordinates in the scene, and thus the matching is implicitly performed by the forward pass through the network. However, in a large and ambiguous environment, learning such a regression task directly can be difficult for a single network. In this work, we present a new hierarchical scene coordinate network to predict pixel scene coordinates in a coarse-to-fine manner from a single RGB image. The network consists of a series of output layers, each of them conditioned on the previous ones. The final output layer predicts the 3D coordinates and the others produce progressively finer discrete location labels. The proposed method outperforms the baseline regression-only network and allows us to train compact models which scale robustly to large environments. It sets a new state-of-the-art for single-image RGB localization performance on the 7-Scenes, 12-Scenes, Cambridge Landmarks datasets, and three combined scenes. Moreover, for large-scale outdoor localization on the Aachen Day-Night dataset, we present a hybrid approach which outperforms existing scene coordinate regression methods, and reduces significantly the performance gap w.r.t. explicit feature matching methods.

Download the Paper

AUTHORS

Written by

Jakob Verbeek

Juho Kannala

Shuzhe Wang

Xiaotian Li

Yi Zhao

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 23, 2024

COMPUTER VISION

Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on Aerial Lidar

Jamie Tolan, Eric Yang, Ben Nosarzewski, Guillaume Couairon, Huy Vo, John Brandt, Justine Spore, Sayantan Majumdar, Daniel Haziza, Janaki Vamaraju, Theo Moutakanni, Piotr Bojanowski, Tracy Johns, Brian White, Tobias Tiecke, Camille Couprie, Edward Saenz

April 23, 2024

April 23, 2024

CONVERSATIONAL AI

GRAPHICS

Generating Illustrated Instructions

Sachit Menon, Ishan Misra, Rohit Girdhar

April 23, 2024

April 18, 2024

COMPUTER VISION

Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation

Jonas Kohler, Albert Pumarola, Edgar Schoenfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda, Ali Thabet

April 18, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.