Research

Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights

December 6, 2020

Abstract

Probabilistic neural networks are typically modeled with independent weight priors, which do not capture weight correlations in the prior and do not provide a parsimonious interface to express properties in function space. A desirable class of priors would represent weights compactly, capture correlations between weights, facilitate calibrated reasoning about uncertainty, and allow inclusion of prior knowledge about the function space such as periodicity or dependence on contexts such as inputs. To this end, this paper introduces two innovations: (i) a Gaussian process-based hierarchical model for network weights based on unit priors that can flexibly encode correlated weight structures, and (ii) input-dependent versions of these weight priors that can provide convenient ways to regularize the function space through the use of kernels defined on contextual inputs. We show these models provide desirable test-time uncertainty estimates on out-of-distribution data and demonstrate cases of modeling inductive biases for neural networks with kernels which help both interpolation and extrapolation from training data.

Download the Paper

AUTHORS

Written by

Theofanis Karaletsos

Thang D. Bui

Research Topics

Machine Learning

Related Publications

June 11, 2025

Computer Vision

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 10, 2025

Computer Vision

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 10, 2025

June 10, 2025

Robotics

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 10, 2025

April 14, 2025

Graphics

Autoregressive Distillation of Diffusion Transformers

Yeongmin Kim, Sotiris Anagnostidis, Yuming Du, Edgar Schoenfeld, Jonas Kohler, Markos Georgopoulos, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu

April 14, 2025

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.