Research

Computer Vision

Hierarchical Cascade of Classifiers for Efficient Poselet Evaluation

September 18, 2014

Abstract

Poselets have been used in a variety of computer vision tasks, such as detection, segmentation, action classification, pose estimation and action recognition, often achieving state-of-the-art performance. Poselet evaluation, however, is computationally intensive as it involves running thousands of scanning window classifiers. We present an algorithm for training a hierarchical cascade of part-based detectors and apply it to speed up poselet evaluation.

Our cascade hierarchy leverages common components shared across poselets. We generate a family of cascade hierarchies, including trees that grow logarithmically on the number of poselet classifiers. Our algorithm, under some reasonable assumptions, finds the optimal tree structure that maximizes speed for a given target detection rate. We test our system on the PASCAL dataset and show an order of magnitude speedup at less than 1% loss in AP.

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.