September 18, 2014
Poselets have been used in a variety of computer vision tasks, such as detection, segmentation, action classification, pose estimation and action recognition, often achieving state-of-the-art performance. Poselet evaluation, however, is computationally intensive as it involves running thousands of scanning window classifiers. We present an algorithm for training a hierarchical cascade of part-based detectors and apply it to speed up poselet evaluation.
Our cascade hierarchy leverages common components shared across poselets. We generate a family of cascade hierarchies, including trees that grow logarithmically on the number of poselet classifiers. Our algorithm, under some reasonable assumptions, finds the optimal tree structure that maximizes speed for a given target detection rate. We test our system on the PASCAL dataset and show an order of magnitude speedup at less than 1% loss in AP.
Publisher
Research Topics
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models