RESEARCH

SPEECH & AUDIO

Hide and Speak: Towards Deep Neural Networks for Speech Steganography

October 25, 2020

Abstract

Steganography is the science of hiding a secret message within an ordinary public message, which is referred to as Carrier. Traditionally, digital signal processing techniques, such as least significant bit encoding, were used for hiding messages. In this paper, we explore the use of deep neural networks as steganographic functions for speech data. We showed that steganography models proposed for vision are less suitable for speech, and propose a new model that includes the short-time Fourier transform and inverse-short-time Fourier transform as differentiable layers within the network, thus imposing a vital constraint on the network outputs. We empirically demonstrated the effectiveness of the proposed method comparing to deep learning based on several speech datasets and analyzed the results quantitatively and qualitatively. Moreover, we showed that the proposed approach could be applied to conceal multiple messages in a single carrier using multiple decoders or a single conditional decoder. Lastly, we evaluated our model under different channel distortions. Qualitative experiments suggest that modifications to the carrier are unnoticeable by human listeners and that the decoded messages are highly intelligible.

Download the Paper

AUTHORS

Written by

Yossef Mordechay Adi

Bhiksha Raj

Felix Kreuk

Joseph Keshet

Rita Singh

Publisher

InterSpeech

Related Publications

June 27, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset

Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, Praveen Chowdary, Joe Chuang, Antony D'Avirro, Jon Daly, Ning Dong, Mark Duppenthaler, Cynthia Gao, Jeff Girard, Martin Gleize, Sahir Gomez, Hongyu Gong, Srivathsan Govindarajan, Brandon Han, Sen He, Denise Hernandez, Yordan Hristov, Rongjie Huang, Hirofumi Inaguma, Somya Jain, Raj Janardhan, Qingyao Jia, Christopher Klaiber, Dejan Kovachev, Moneish Kumar, Hang Li, Yilei Li, Pavel Litvin, Wei Liu, Guangyao Ma, Jing Ma, Martin Ma, Xutai Ma, Lucas Mantovani, Sagar Miglani, Sreyas Mohan, Louis-Philippe Morency, Evonne Ng, Kam-Woh Ng, Tu Anh Nguyen, Amia Oberai, Benjamin Peloquin, Juan Pino, Jovan Popovic, Omid Poursaeed, Fabian Prada, Alice Rakotoarison, Alexander Richard, Christophe Ropers, Safiyyah Saleem, Vasu Sharma, Alex Shcherbyna, Jie Shen, Anastasis Stathopoulos, Anna Sun, Paden Tomasello, Tuan Tran, Arina Turkatenko, Bo Wan, Chao Wang, Jeff Wang, Mary Williamson, Carleigh Wood, Tao Xiang, Yilin Yang, Zhiyuan Yao, Chen Zhang, Jiemin Zhang, Xinyue Zhang, Jason Zheng, Pavlo Zhyzheria, Jan Zikes, Michael Zollhoefer

June 27, 2025

June 13, 2025

FAIRNESS

INTEGRITY

Measuring multi-calibration

Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert

June 13, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.