Hercules: Heterogeneity-Aware Inference Serving for At-Scale Personalized Recommendation

April 02, 2022

Abstract

Personalized recommendation is an important class of deep-learning applications that powers a large collection of internet services and consumes a considerable amount of datacenter resources. As the scale of production-grade recommendation systems continues to grow, optimizing their serving performance and efficiency in a heterogeneous datacenter is important and can translate into infrastructure capacity saving. In this paper, we propose Hercules, an optimized framework for personalized recommendation inference serving that targets diverse industry-representative models and cloud-scale heterogeneous systems. Hercules performs a two-stage optimization procedure - offline profiling and online serving. The first stage searches the large under-explored task scheduling space with a gradient-based search algorithm achieving up to 9.0x latency-bounded throughput improvement on individual servers; it also identifies the optimal heterogeneous server architecture for each recommendation workload. The second stage performs heterogeneity-aware cluster provisioning to optimize resource mapping and allocation in response to fluctuating diurnal loads. The proposed cluster scheduler in Hercules achieves 47.7% cluster capacity saving and reduces the provisioned power by 23.7% over a state-of-the-art greedy scheduler.

Download the Paper

AUTHORS

Written by

Liu Ke

Carole-Jean Wu

Hsien-Hsin Sean Lee

Udit Gupta

Mark Hempstead

Xuan Zhang

Publisher

IEEE International Symposium on High-Performance Computer Architecture (HPCA-28)

Research Topics

Systems Research

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.