RESEARCH

SPEECH & AUDIO

Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora

July 16, 2018

Abstract

Methods for unsupervised hypernym detection may broadly be categorized according to two paradigms: pattern-based and distributional methods. In this paper, we study the performance of both approaches on several hypernymy tasks and find that simple pattern-based methods consistently outperform distributional methods on common benchmark datasets. Our results show that pattern-based models provide important contextual constraints which are not yet captured in distributional methods.

Download the Paper

AUTHORS

Written by

Max Nickel

Douwe Kiela

Stephen Roller

Publisher

ACL

Related Publications

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

August 01, 2024

SPEECH & AUDIO

NLP

Toward Joint Language Modeling for Speech Units and Text

Ju-Chieh Chou, Wei-Ning Hsu, Karen Livescu, Arun Babu, Alexis Conneau, Alexei Baevski, Michael Auli

August 01, 2024

July 23, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

The Llama 3 Herd of Models

Llama team

July 23, 2024

June 25, 2024

SPEECH & AUDIO

NLP

Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation

Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee

June 25, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.