INTEGRITY

NLP

Hate Speech in Pixels: Detection of Offensive Memes towards Automatic Moderation

May 14, 2021

Abstract

This work addresses the challenge of hate speech detection in Internet memes, and attempts using visual information to automatically detect hate speech, unlike any previous work of our knowledge. Memes are pixel-based multimedia documents that contain photos or illustrations together with phrases which, when combined, usually adopt a funny meaning. However, hate memes are also used to spread hate through social networks, so their automatic detection would help reduce their harmful societal impact. Our results indicate that the model can learn to detect some of the memes, but that the task is far from being solved with this simple architecture. While previous work focuses on linguistic hate speech, our experiments indicate how the visual modality can be much more informative for hate speech detection than the linguistic one in memes. In our experiments, we built a dataset of 5,020 memes to train and evaluate a multi-layer perceptron over the visual and language representations, whether independently or fused.

Download the Paper

AUTHORS

Written by

Benet Oriol

Cristian Canton Ferrer

Xavier Giro-i-Nieto

Publisher

NeurIPS

Related Publications

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 19, 2024

NLP

Adaptive Decoding via Latent Preference Optimization

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin

November 19, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.