May 14, 2021
This work addresses the challenge of hate speech detection in Internet memes, and attempts using visual information to automatically detect hate speech, unlike any previous work of our knowledge. Memes are pixel-based multimedia documents that contain photos or illustrations together with phrases which, when combined, usually adopt a funny meaning. However, hate memes are also used to spread hate through social networks, so their automatic detection would help reduce their harmful societal impact. Our results indicate that the model can learn to detect some of the memes, but that the task is far from being solved with this simple architecture. While previous work focuses on linguistic hate speech, our experiments indicate how the visual modality can be much more informative for hate speech detection than the linguistic one in memes. In our experiments, we built a dataset of 5,020 memes to train and evaluate a multi-layer perceptron over the visual and language representations, whether independently or fused.
Publisher
NeurIPS
November 20, 2024
Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra
November 20, 2024
November 19, 2024
Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin
November 19, 2024
November 14, 2024
Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si
November 14, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
Foundational models
Latest news
Foundational models