COMPUTER VISION

CORE MACHINE LEARNING

Grounding inductive biases in natural images: invariance stems from variations in data

November 09, 2021

Abstract

To perform well on unseen and potentially out-of-distribution samples, it is desirable for machine learning models to have a predictable response with respect to transformations affecting the factors of variation of the input. Here, we study the relative importance of several types of inductive biases towards such predictable behavior: the choice of data, their augmentations, and model architectures. Invariance is commonly achieved through hand-engineered data augmentation, but do standard data augmentations address transformations that explain variations in real data? While prior work has focused on synthetic data, we attempt here to characterize the factors of variation in a real dataset, ImageNet, and study the invariance of both standard residual networks and the recently proposed vision transformer with respect to changes in these factors. We show standard augmentation relies on a precise combination of translation and scale, with translation recapturing most of the performance improvement---despite the (approximate) translation invariance built in to convolutional architectures, such as residual networks. In fact, we found that scale and translation invariance was similar across residual networks and vision transformer models despite their markedly different architectural inductive biases. We show the training data itself is the main source of invariance, and that data augmentation only further increases the learned invariances. Notably, the invariances learned during training align with the ImageNet factors of variation we found. Finally, we find that the main factors of variation in ImageNet mostly relate to appearance and are specific to each class.

Download the Paper

AUTHORS

Written by

Diane Bouchacourt

Mark Ibrahim

Ari Morcos

Publisher

NeurIPS

Research Topics

Computer Vision

Core Machine Learning

Related Publications

March 20, 2024

COMPUTER VISION

SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model

Armen Avetisyan, Chris Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang, Duncan Frost, Luke Holland, Campbell Orme, Jakob Julian Engel, Edward Miller, Richard Newcombe, Vasileios Balntas

March 20, 2024

February 15, 2024

RANKING AND RECOMMENDATIONS

CORE MACHINE LEARNING

TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning

Danny Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Chris Leung (AI), Jianbo Li, Rajgopal Kannan, Viktor Prasanna

February 15, 2024

February 15, 2024

CORE MACHINE LEARNING

Revisiting Feature Prediction for Learning Visual Representations from Video

Adrien Bardes, Quentin Garrido, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido Assran, Nicolas Ballas, Jean Ponce

February 15, 2024

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.