Research

ML Applications

GrokNet: Unified Computer Vision Model Trunk and Embeddings For Commerce

August 22, 2020

Abstract

In this paper, we present GrokNet, a deployed image recognition system for commerce applications. GrokNet leverages a multi-task learning approach to train a single computer vision trunk. We achieve a 2.1x improvement in exact product match accuracy when compared to the previous state-of-the-art Facebook product recognition system. We achieve this by training on 7 datasets across several commerce verticals, using 80 categorical loss functions and 3 embedding losses. We share our experience of combining diverse sources with wide-ranging label semantics and image statistics, including learning from human annotations, user-generated tags, and noisy search engine interaction data. GrokNet has demonstrated gains in production applications and operates at Facebook scale.

Download the Paper

AUTHORS

Written by

Sean Bell

Yiqun Liu

Sami Alsheikh

Yina Tang

Ed Pizzi

M. Henning

Karun Singh

Omkar Parkhi

Fedor Borisyuk

Publisher

KDD

Recent Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.