June 17, 2019
Globally modeling and reasoning over relations between regions can be beneficial for many computer vision tasks on both images and videos. Convolutional Neural Networks (CNNs) excel at modeling local relations by convolution operations, but they are typically inefficient at capturing global relations between distant regions and require stacking multiple convolution layers. In this work, we propose a new approach for reasoning globally in which a set of features are globally aggregated over the coordinate space and then projected to an interaction space where relational reasoning can be efficiently computed. After reasoning, relation-aware features are distributed back to the original coordinate space for down-stream tasks. We further present a highly efficient instantiation of the proposed approach and introduce the Global Reasoning unit (GloRe unit) that implements the coordinate-interaction space mapping by weighted global pooling and weighted broadcasting, and the relation reasoning via graph convolution on a small graph in interaction space. The proposed GloRe unit is lightweight, end-to-end trainable and can be easily plugged into existing CNNs for a wide range of tasks. Extensive experiments show our GloRe unit can consistently boost the performance of state-of-the-art backbone architectures, including ResNet [15, 16], ResNeXt [34], SE-Net [18] and DPN [9], for both 2D and 3D CNNs, on image classification, semantic segmentation and video action recognition task.
Research Topics
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models