COMPUTER VISION

Going Denser with Open-Vocabulary Part Segmentation

August 25, 2023

Abstract

Object detection has been expanded from a limited number of categories to open vocabulary. Moving forward, a complete intelligent vision system requires understanding more fine-grained object descriptions, object parts. In this paper, we propose a detector with the ability to predict both open-vocabulary objects and their part segmentation. This ability comes from two designs. First, we train the detector on the joint of part-level, object-level and image-level data to build the multi-granularity alignment between language and image. Second, we parse the novel object into its parts by its dense semantic correspondence with the base object. These two designs enable the detector to largely benefit from various data sources and foundation models. In open-vocabulary part segmentation experiments, our method outperforms the baseline by 3.3$\sim$7.3 mAP in cross-dataset generalization on PartImageNet, and improves the baseline by 7.3 novel AP$_{50}$ in cross-category generalization on Pascal Part. Finally, we train a detector that generalizes to a wide range of part segmentation datasets while achieving better performance than dataset-specific training.

Download the Paper

AUTHORS

Written by

Peize Sun

Shoufa Chen

Chenchen Zhu

Fanyi Xiao

Ping Luo

Saining Xie

Zhicheng Yan

Publisher

ICCV

Research Topics

Computer Vision

Related Publications

September 30, 2023

INTEGRITY

COMPUTER VISION

The Stable Signature: Rooting Watermarks in Latent Diffusion Models

Pierre Fernandez, Guillaume Couairon, Hervé Jegou, Matthijs Douze, Teddy Furon

September 30, 2023

September 29, 2023

COMPUTER VISION

Among Us: Adversarially Robust Collaborative Perception by Consensus

Yiming Li, Qi Fang, Jiamu Bai, Siheng Chen, Felix Xu, Chen Feng

September 29, 2023

September 27, 2023

COMPUTER VISION

Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack

Xiaoliang Dai, Ji Hou, Kevin Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue (R) Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yiwen Song, Yi Wen, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh

September 27, 2023

September 22, 2023

COMPUTER VISION

CORE MACHINE LEARNING

Common Corruption Robustness of Point Cloud Detectors: Benchmark and Enhancement

Shuangzhi Li, Zhijie Wang, Felix Xu, Qing Guo, Xingyu Li, Lei Ma

September 22, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.