August 25, 2023
Object detection has been expanded from a limited number of categories to open vocabulary. Moving forward, a complete intelligent vision system requires understanding more fine-grained object descriptions, object parts. In this paper, we propose a detector with the ability to predict both open-vocabulary objects and their part segmentation. This ability comes from two designs. First, we train the detector on the joint of part-level, object-level and image-level data to build the multi-granularity alignment between language and image. Second, we parse the novel object into its parts by its dense semantic correspondence with the base object. These two designs enable the detector to largely benefit from various data sources and foundation models. In open-vocabulary part segmentation experiments, our method outperforms the baseline by 3.3$\sim$7.3 mAP in cross-dataset generalization on PartImageNet, and improves the baseline by 7.3 novel AP$_{50}$ in cross-category generalization on Pascal Part. Finally, we train a detector that generalizes to a wide range of part segmentation datasets while achieving better performance than dataset-specific training.
Publisher
ICCV
Research Topics
September 30, 2023
Pierre Fernandez, Guillaume Couairon, Hervé Jegou, Matthijs Douze, Teddy Furon
September 30, 2023
September 29, 2023
Yiming Li, Qi Fang, Jiamu Bai, Siheng Chen, Felix Xu, Chen Feng
September 29, 2023
September 27, 2023
Xiaoliang Dai, Ji Hou, Kevin Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue (R) Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yiwen Song, Yi Wen, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh
September 27, 2023
September 22, 2023
Shuangzhi Li, Zhijie Wang, Felix Xu, Qing Guo, Xingyu Li, Lei Ma
September 22, 2023
Who We Are
Our Actions
Newsletter