SPEECH & AUDIO

Generative Pre-training for Speech with Flow Matching

March 05, 2024

Abstract

Generative models have gained more and more attention in recent years for their remarkable success in tasks that required estimating and sampling data distribution to generate high-fidelity synthetic data. In speech, text-to-speech synthesis and neural vocoder are good examples here generative models have shined. While generative models have been applied to different applications in speech, there exists no general-purpose generative model that models speech directly. In this work, we take a step toward this direction by showing a single pre-trained generative model can be adapted to different downstream tasks with strong performance. Specificall, we pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions. Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis. Our work suggested a foundational model for generation tasks in speech can be built with generative pre-training.

Download the Paper

AUTHORS

Written by

Alex Liu

Matt Le

Apoorv Vyas

Bowen Shi

Andros Tjandra

Wei-Ning Hsu

Publisher

ICLR

Research Topics

Speech & Audio

Related Publications

May 24, 2024

SPEECH & AUDIO

NLP

DOC-RAG: ASR Language Model Personalization with Domain-Distributed Co-occurrence Retrieval Augmentation

Zhe Liu

May 24, 2024

April 14, 2024

SPEECH & AUDIO

NLP

Multi-task Learning for Front-end Text Processing in TTS

Yun Wang (Speech), Arthur Hinsvark, Qing He, Shun Zhang, Wonjune Kang

April 14, 2024

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

December 11, 2023

SPEECH & AUDIO

Audiobox: Unified Audio Generation with Natural Language Prompts

Wei-Ning Hsu, Akinniyi Akinyemi, Alice Rakotoarison, Andros Tjandra, Apoorv Vyas, Baishan Guo, Bapi Akula, Bowen Shi, Brian Ellis, Ivan Cruz, Jeff Wang, Jiemin Zhang, Mary Williamson, Matt Le, Rashel Moritz, Robbie Adkins, William Ngan, Xinyue Zhang, Yael Yungster, Yi-Chiao Wu

December 11, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.